coeff_tcheby_xy_vers_monome Subroutine

public subroutine coeff_tcheby_xy_vers_monome(tab_coeff_m, deg_x, deg_y)

Transformation du produit de Tchebychev en coefficients de monômes

Arguments

Type IntentOptional Attributes Name
real(kind=R8), intent(out), dimension(0:deg_x, 0:deg_y) :: tab_coeff_m

*coefficients de la CL de monômes

integer(kind=I4), intent(in) :: deg_x

*degré du polynôme en

integer(kind=I4), intent(in) :: deg_y

*degré du polynôme en


Calls

proc~~coeff_tcheby_xy_vers_monome~~CallsGraph proc~coeff_tcheby_xy_vers_monome coeff_tcheby_xy_vers_monome proc~coeff_tcheby_vers_monome coeff_tcheby_vers_monome proc~coeff_tcheby_xy_vers_monome->proc~coeff_tcheby_vers_monome

Called by

proc~~coeff_tcheby_xy_vers_monome~~CalledByGraph proc~coeff_tcheby_xy_vers_monome coeff_tcheby_xy_vers_monome proc~coeff_poly_tcheby_xy_vers_poly_monome coeff_poly_tcheby_xy_vers_poly_monome proc~coeff_poly_tcheby_xy_vers_poly_monome->proc~coeff_tcheby_xy_vers_monome proc~least_squares_tcheby least_squares_tcheby proc~least_squares_tcheby->proc~coeff_poly_tcheby_xy_vers_poly_monome program~test_tchebychev test_tchebychev program~test_tchebychev->proc~least_squares_tcheby

Source Code

   subroutine coeff_tcheby_xy_vers_monome(tab_coeff_m, deg_x, deg_y)
   !!  Transformation du produit \(ti(x) \cdot tj(y)\) de Tchebychev en coefficients de monômes \(x^i \cdot y^j\)
   implicit none
   integer(kind=I4), intent(in ) :: deg_x                                     !! *degré du polynôme en \(x*\)
   integer(kind=I4), intent(in ) :: deg_y                                     !! *degré du polynôme en \(y*\)
   real(kind=R8),    intent(out), dimension(0:deg_x, 0:deg_y) :: tab_coeff_m  !! *coefficients de la CL de monômes \(x^i * y^j*\)

      integer(kind=I4) :: i, j
      real(kind=R8), dimension(0:deg_x) :: coeff_tx, coeff_mx
      real(kind=R8), dimension(0:deg_y) :: coeff_ty, coeff_my

      ! single Tchebychev polynomial, deg_x
      coeff_tx(0:deg_x) = 0._R8
      coeff_tx(  deg_x) = 1._R8
      call coeff_tcheby_vers_monome(coeff_tx(0:deg_x), coeff_mx(0:deg_x), deg_x)

      ! single Tchebychev polynomial, deg_y
      coeff_ty(0:deg_y) = 0._R8
      coeff_ty(  deg_y) = 1._R8
      call coeff_tcheby_vers_monome(coeff_ty(0:deg_y), coeff_my(0:deg_y), deg_y)

      tab_coeff_m(0:deg_x, 0:deg_y) = 0._R8
      do j = 0, deg_y
      do i = 0, deg_x
         tab_coeff_m(i, j) = coeff_mx(i)*coeff_my(j)
      enddo
      enddo

   return
   endsubroutine coeff_tcheby_xy_vers_monome