FDJAC2 estimates an M by N jacobian matrix using forward differences.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real | :: | fcn | ||||
integer(kind=4) | :: | m | ||||
integer(kind=4) | :: | n | ||||
real(kind=8) | :: | x(n) | ||||
real(kind=8) | :: | fvec(m) | ||||
real(kind=8) | :: | fjac(ldfjac,n) | ||||
integer(kind=4) | :: | ldfjac | ||||
integer(kind=4) | :: | iflag | ||||
real(kind=8) | :: | epsfcn |
subroutine fdjac2 ( fcn, m, n, x, fvec, fjac, ldfjac, iflag, epsfcn ) !*****************************************************************************80 ! !! FDJAC2 estimates an M by N jacobian matrix using forward differences. ! ! Discussion: ! ! This function computes a forward-difference approximation ! to the M by N jacobian matrix associated with a specified ! problem of M functions in N variables. ! ! Licensing: ! ! This code may freely be copied, modified, and used for any purpose. ! ! Modified: ! ! 06 April 2010 ! ! Author: ! ! Original FORTRAN77 version by Jorge More, Burton Garbow, Kenneth Hillstrom. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! Jorge More, Burton Garbow, Kenneth Hillstrom, ! User Guide for MINPACK-1, ! Technical Report ANL-80-74, ! Argonne National Laboratory, 1980. ! ! Parameters: ! ! Input, external FCN, the name of the user-supplied subroutine which ! calculates the functions. The routine should have the form: ! subroutine fcn ( m, n, x, fvec, iflag ) ! integer ( kind = 4 ) n ! real ( kind = 8 ) fvec(m) ! integer ( kind = 4 ) iflag ! real ( kind = 8 ) x(n) ! ! If IFLAG = 0 on input, then FCN is only being called to allow the user ! to print out the current iterate. ! If IFLAG = 1 on input, FCN should calculate the functions at X and ! return this vector in FVEC. ! To terminate the algorithm, FCN may set IFLAG negative on return. ! ! Input, integer ( kind = 4 ) M, is the number of functions. ! ! Input, integer ( kind = 4 ) N, is the number of variables. ! N must not exceed M. ! ! Input, real ( kind = 8 ) X(N), the point where the jacobian is evaluated. ! ! Input, real ( kind = 8 ) FVEC(M), the functions evaluated at X. ! ! Output, real ( kind = 8 ) FJAC(LDFJAC,N), the M by N approximate ! jacobian matrix. ! ! Input, integer ( kind = 4 ) LDFJAC, the leading dimension of FJAC, ! which must not be less than M. ! ! Output, integer ( kind = 4 ) IFLAG, is an error flag returned by FCN. ! If FCN returns a nonzero value of IFLAG, then this routine returns ! immediately to the calling program, with the value of IFLAG. ! ! Input, real ( kind = 8 ) EPSFCN, is used in determining a suitable ! step length for the forward-difference approximation. This approximation ! assumes that the relative errors in the functions are of the order of ! EPSFCN. If EPSFCN is less than the machine precision, it is assumed that ! the relative errors in the functions are of the order of the machine ! precision. ! implicit none integer ( kind = 4 ) ldfjac integer ( kind = 4 ) m integer ( kind = 4 ) n real ( kind = 8 ) eps real ( kind = 8 ) epsfcn real ( kind = 8 ) epsmch external fcn real ( kind = 8 ) fjac(ldfjac,n) real ( kind = 8 ) fvec(m) real ( kind = 8 ) h integer ( kind = 4 ) i integer ( kind = 4 ) iflag integer ( kind = 4 ) j real ( kind = 8 ) temp real ( kind = 8 ) wa(m) real ( kind = 8 ) x(n) epsmch = epsilon ( epsmch ) eps = sqrt ( max ( epsfcn, epsmch ) ) do j = 1, n temp = x(j) h = eps * abs ( temp ) if ( h == 0.0D+00 ) then h = eps end if iflag = 1 x(j) = temp + h call fcn ( m, n, x, wa, iflag ) if ( iflag < 0 ) then exit end if x(j) = temp fjac(1:m,j) = ( wa(1:m) - fvec(1:m) ) / h end do return endsubroutine fdjac2