lmder Subroutine

public subroutine lmder(fcn, m, n, x, fvec, fjac, ldfjac, ftol, xtol, gtol, maxfev, diag, mode, factor, nprint, info, nfev, njev, ipvt, qtf)

LMDER minimizes M functions in N variables by the Levenberg-Marquardt method.

Arguments

Type IntentOptional Attributes Name
real :: fcn
integer(kind=4) :: m
integer(kind=4) :: n
real(kind=8) :: x(n)
real(kind=8) :: fvec(m)
real(kind=8) :: fjac(ldfjac,n)
integer(kind=4) :: ldfjac
real(kind=8) :: ftol
real(kind=8) :: xtol
real(kind=8) :: gtol
integer(kind=4) :: maxfev
real(kind=8) :: diag(n)
integer(kind=4) :: mode
real(kind=8) :: factor
integer(kind=4) :: nprint
integer(kind=4) :: info
integer(kind=4) :: nfev
integer(kind=4) :: njev
integer(kind=4) :: ipvt(n)
real(kind=8) :: qtf(n)

Calls

proc~~lmder~~CallsGraph proc~lmder lmder proc~enorm enorm proc~lmder->proc~enorm proc~lmpar lmpar proc~lmder->proc~lmpar proc~qrfac qrfac proc~lmder->proc~qrfac proc~lmpar->proc~enorm proc~qrsolv qrsolv proc~lmpar->proc~qrsolv proc~qrfac->proc~enorm

Called by

proc~~lmder~~CalledByGraph proc~lmder lmder proc~lmder1 lmder1 proc~lmder1->proc~lmder proc~lmder1_2_test lmder1_2_test proc~lmder1_2_test->proc~lmder1 proc~lmder1_test lmder1_test proc~lmder1_test->proc~lmder1 program~test_minpack test_minpack program~test_minpack->proc~lmder1_2_test program~test_minpack->proc~lmder1_test

Source Code

subroutine lmder ( fcn, m, n, x, fvec, fjac, ldfjac, ftol, xtol, gtol, maxfev, &
  diag, mode, factor, nprint, info, nfev, njev, ipvt, qtf )

!*****************************************************************************80
!
!! LMDER minimizes M functions in N variables by the Levenberg-Marquardt method.
!
!  Discussion:
!
!    LMDER minimizes the sum of the squares of M nonlinear functions in
!    N variables by a modification of the Levenberg-Marquardt algorithm.
!    The user must provide a subroutine which calculates the functions
!    and the jacobian.
!
!  Licensing:
!
!    This code may freely be copied, modified, and used for any purpose.
!
!  Modified:
!
!    06 April 2010
!
!  Author:
!
!    Original FORTRAN77 version by Jorge More, Burton Garbow, Kenneth Hillstrom.
!    FORTRAN90 version by John Burkardt.
!
!  Reference:
!
!    Jorge More, Burton Garbow, Kenneth Hillstrom,
!    User Guide for MINPACK-1,
!    Technical Report ANL-80-74,
!    Argonne National Laboratory, 1980.
!
!  Parameters:
!
!    Input, external FCN, the name of the user-supplied subroutine which
!    calculates the functions and the jacobian.  FCN should have the form:
!      subroutine fcn ( m, n, x, fvec, fjac, ldfjac, iflag )
!      integer ( kind = 4 ) ldfjac
!      integer ( kind = 4 ) n
!      real ( kind = 8 ) fjac(ldfjac,n)
!      real ( kind = 8 ) fvec(m)
!      integer ( kind = 4 ) iflag
!      real ( kind = 8 ) x(n)
!
!    If IFLAG = 0 on input, then FCN is only being called to allow the user
!    to print out the current iterate.
!    If IFLAG = 1 on input, FCN should calculate the functions at X and
!    return this vector in FVEC.
!    If IFLAG = 2 on input, FCN should calculate the jacobian at X and
!    return this matrix in FJAC.
!    To terminate the algorithm, FCN may set IFLAG negative on return.
!
!    Input, integer ( kind = 4 ) M, is the number of functions.
!
!    Input, integer ( kind = 4 ) N, is the number of variables.
!    N must not exceed M.
!
!    Input/output, real ( kind = 8 ) X(N).  On input, X must contain an initial
!    estimate of the solution vector.  On output X contains the final
!    estimate of the solution vector.
!
!    Output, real ( kind = 8 ) FVEC(M), the functions evaluated at the output X.
!
!    Output, real ( kind = 8 ) FJAC(LDFJAC,N), an M by N array.  The upper
!    N by N submatrix of FJAC contains an upper triangular matrix R with
!    diagonal elements of nonincreasing magnitude such that
!      P' * ( JAC' * JAC ) * P = R' * R,
!    where P is a permutation matrix and JAC is the final calculated jacobian.
!    Column J of P is column IPVT(J) of the identity matrix.  The lower
!    trapezoidal part of FJAC contains information generated during
!    the computation of R.
!
!    Input, integer ( kind = 4 ) LDFJAC, the leading dimension of FJAC.
!    LDFJAC must be at least M.
!
!    Input, real ( kind = 8 ) FTOL.  Termination occurs when both the actual
!    and predicted relative reductions in the sum of squares are at most FTOL.
!    Therefore, FTOL measures the relative error desired in the sum of
!    squares.  FTOL should be nonnegative.
!
!    Input, real ( kind = 8 ) XTOL.  Termination occurs when the relative error
!    between two consecutive iterates is at most XTOL.  XTOL should be
!    nonnegative.
!
!    Input, real ( kind = 8 ) GTOL.  Termination occurs when the cosine of the
!    angle between FVEC and any column of the jacobian is at most GTOL in
!    absolute value.  Therefore, GTOL measures the orthogonality desired
!    between the function vector and the columns of the jacobian.  GTOL should
!    be nonnegative.
!
!    Input, integer ( kind = 4 ) MAXFEV.  Termination occurs when the number of
!    calls to FCN with IFLAG = 1 is at least MAXFEV by the end of an iteration.
!
!    Input/output, real ( kind = 8 ) DIAG(N).  If MODE = 1, then DIAG is set
!    internally.  If MODE = 2, then DIAG must contain positive entries that
!    serve as multiplicative scale factors for the variables.
!
!    Input, integer ( kind = 4 ) MODE, scaling option.
!    1, variables will be scaled internally.
!    2, scaling is specified by the input DIAG vector.
!
!    Input, real ( kind = 8 ) FACTOR, determines the initial step bound.  This
!    bound is set to the product of FACTOR and the euclidean norm of DIAG*X if
!    nonzero, or else to FACTOR itself.  In most cases, FACTOR should lie
!    in the interval (0.1, 100) with 100 the recommended value.
!
!    Input, integer ( kind = 4 ) NPRINT, enables controlled printing of iterates
!    if it is positive.  In this case, FCN is called with IFLAG = 0 at the
!    beginning of the first iteration and every NPRINT iterations thereafter
!    and immediately prior to return, with X and FVEC available
!    for printing.  If NPRINT is not positive, no special calls
!    of FCN with IFLAG = 0 are made.
!
!    Output, integer ( kind = 4 ) INFO, error flag.  If the user has terminated
!    execution, INFO is set to the (negative) value of IFLAG. See description
!    of FCN.  Otherwise, INFO is set as follows:
!    0, improper input parameters.
!    1, both actual and predicted relative reductions in the sum of
!       squares are at most FTOL.
!    2, relative error between two consecutive iterates is at most XTOL.
!    3, conditions for INFO = 1 and INFO = 2 both hold.
!    4, the cosine of the angle between FVEC and any column of the jacobian
!       is at most GTOL in absolute value.
!    5, number of calls to FCN with IFLAG = 1 has reached MAXFEV.
!    6, FTOL is too small.  No further reduction in the sum of squares
!       is possible.
!    7, XTOL is too small.  No further improvement in the approximate
!       solution X is possible.
!    8, GTOL is too small.  FVEC is orthogonal to the columns of the
!       jacobian to machine precision.
!
!    Output, integer ( kind = 4 ) NFEV, the number of calls to FCN with
!    IFLAG = 1.
!
!    Output, integer ( kind = 4 ) NJEV, the number of calls to FCN with
!    IFLAG = 2.
!
!    Output, integer ( kind = 4 ) IPVT(N), defines a permutation matrix P
!    such that JAC*P = Q*R, where JAC is the final calculated jacobian, Q is
!    orthogonal (not stored), and R is upper triangular with diagonal
!    elements of nonincreasing magnitude.  Column J of P is column
!    IPVT(J) of the identity matrix.
!
!    Output, real ( kind = 8 ) QTF(N), contains the first N elements of Q'*FVEC.
!
  implicit none

  integer ( kind = 4 ) ldfjac
  integer ( kind = 4 ) m
  integer ( kind = 4 ) n

  real ( kind = 8 ) actred
  real ( kind = 8 ) delta
  real ( kind = 8 ) diag(n)
  real ( kind = 8 ) dirder
!~   real ( kind = 8 ) enorm
  real ( kind = 8 ) epsmch
  real ( kind = 8 ) factor
  external fcn
  real ( kind = 8 ) fjac(ldfjac,n)
  real ( kind = 8 ) fnorm
  real ( kind = 8 ) fnorm1
  real ( kind = 8 ) ftol
  real ( kind = 8 ) fvec(m)
  real ( kind = 8 ) gnorm
  real ( kind = 8 ) gtol
  integer ( kind = 4 ) i
  integer ( kind = 4 ) iflag
  integer ( kind = 4 ) info
  integer ( kind = 4 ) ipvt(n)
  integer ( kind = 4 ) iter
  integer ( kind = 4 ) j
  integer ( kind = 4 ) l
  integer ( kind = 4 ) maxfev
  integer ( kind = 4 ) mode
  integer ( kind = 4 ) nfev
  integer ( kind = 4 ) njev
  integer ( kind = 4 ) nprint
  real ( kind = 8 ) par
  logical pivot
  real ( kind = 8 ) pnorm
  real ( kind = 8 ) prered
  real ( kind = 8 ) qtf(n)
  real ( kind = 8 ) ratio
  real ( kind = 8 ) sum2
  real ( kind = 8 ) temp
  real ( kind = 8 ) temp1
  real ( kind = 8 ) temp2
  real ( kind = 8 ) wa1(n)
  real ( kind = 8 ) wa2(n)
  real ( kind = 8 ) wa3(n)
  real ( kind = 8 ) wa4(m)
  real ( kind = 8 ) xnorm
  real ( kind = 8 ) x(n)
  real ( kind = 8 ) xtol

  epsmch = epsilon ( epsmch )

  info = 0
  iflag = 0
  nfev = 0
  njev = 0
!
!  Check the input parameters for errors.
!
  if ( n <= 0 ) then
    go to 300
  end if

  if ( m < n ) then
    go to 300
  end if

  if ( ldfjac < m &
    .or. ftol < 0.0D+00 .or. xtol < 0.0D+00 .or. gtol < 0.0D+00 &
     .or. maxfev <= 0 .or. factor <= 0.0D+00 ) then
    go to 300
  end if

  if ( mode == 2 ) then
    do j = 1, n
      if ( diag(j) <= 0.0D+00 ) then
        go to 300
      end if
    end do
  end if
!
!  Evaluate the function at the starting point and calculate its norm.
!
  iflag = 1
  call fcn ( m, n, x, fvec, fjac, ldfjac, iflag )
  nfev = 1
  if ( iflag < 0 ) then
    go to 300
  end if

  fnorm = enorm ( m, fvec )
!
!  Initialize Levenberg-Marquardt parameter and iteration counter.
!
  par = 0.0D+00
  iter = 1
!
!  Beginning of the outer loop.
!
30   continue
!
!  Calculate the jacobian matrix.
!
    iflag = 2
    call fcn ( m, n, x, fvec, fjac, ldfjac, iflag )

    njev = njev + 1

    if ( iflag < 0 ) then
      go to 300
    end if
!
!  If requested, call FCN to enable printing of iterates.
!
    if ( 0 < nprint ) then
      iflag = 0
      if ( mod ( iter - 1, nprint ) == 0 ) then
        call fcn ( m, n, x, fvec, fjac, ldfjac, iflag )
      end if
      if ( iflag < 0 ) then
        go to 300
      end if
    end if
!
!  Compute the QR factorization of the jacobian.
!
    pivot = .true.
    call qrfac ( m, n, fjac, ldfjac, pivot, ipvt, n, wa1, wa2 )
!
!  On the first iteration and if mode is 1, scale according
!  to the norms of the columns of the initial jacobian.
!
    if ( iter == 1 ) then

      if ( mode /= 2 ) then
        diag(1:n) = wa2(1:n)
        do j = 1, n
          if ( wa2(j) == 0.0D+00 ) then
            diag(j) = 1.0D+00
          end if
        end do
      end if
!
!  On the first iteration, calculate the norm of the scaled X
!  and initialize the step bound DELTA.
!
      wa3(1:n) = diag(1:n) * x(1:n)

      xnorm = enorm ( n, wa3 )
      delta = factor * xnorm
      if ( delta == 0.0D+00 ) then
        delta = factor
      end if

    end if
!
!  Form Q'*FVEC and store the first N components in QTF.
!
    wa4(1:m) = fvec(1:m)

    do j = 1, n

      if ( fjac(j,j) /= 0.0D+00 ) then
        sum2 = dot_product ( wa4(j:m), fjac(j:m,j) )
        temp = - sum2 / fjac(j,j)
        wa4(j:m) = wa4(j:m) + fjac(j:m,j) * temp
      end if

      fjac(j,j) = wa1(j)
      qtf(j) = wa4(j)

    end do
!
!  Compute the norm of the scaled gradient.
!
    gnorm = 0.0D+00

    if ( fnorm /= 0.0D+00 ) then

      do j = 1, n
        l = ipvt(j)
        if ( wa2(l) /= 0.0D+00 ) then
          sum2 = dot_product ( qtf(1:j), fjac(1:j,j) ) / fnorm
          gnorm = max ( gnorm, abs ( sum2 / wa2(l) ) )
        end if
      end do

    end if
!
!  Test for convergence of the gradient norm.
!
    if ( gnorm <= gtol ) then
      info = 4
      go to 300
    end if
!
!  Rescale if necessary.
!
    if ( mode /= 2 ) then
      do j = 1, n
        diag(j) = max ( diag(j), wa2(j) )
      end do
    end if
!
!  Beginning of the inner loop.
!
200    continue
!
!  Determine the Levenberg-Marquardt parameter.
!
    call lmpar ( n, fjac, ldfjac, ipvt, diag, qtf, delta, par, wa1, wa2 )
!
!  Store the direction p and x + p. calculate the norm of p.
!
    wa1(1:n) = - wa1(1:n)
    wa2(1:n) = x(1:n) + wa1(1:n)
    wa3(1:n) = diag(1:n) * wa1(1:n)

    pnorm = enorm ( n, wa3 )
!
!  On the first iteration, adjust the initial step bound.
!
    if ( iter == 1 ) then
      delta = min ( delta, pnorm )
    end if
!
!  Evaluate the function at x + p and calculate its norm.
!
    iflag = 1
    call fcn ( m, n, wa2, wa4, fjac, ldfjac, iflag )

    nfev = nfev + 1

    if ( iflag < 0 ) then
      go to 300
    end if

    fnorm1 = enorm ( m, wa4 )
!
!  Compute the scaled actual reduction.
!
    actred = -1.0D+00
    if ( 0.1D+00 * fnorm1 < fnorm ) then
      actred = 1.0D+00 - ( fnorm1 / fnorm ) ** 2
    end if
!
!  Compute the scaled predicted reduction and
!  the scaled directional derivative.
!
    do j = 1, n
      wa3(j) = 0.0D+00
      l = ipvt(j)
      temp = wa1(l)
      wa3(1:j) = wa3(1:j) + fjac(1:j,j) * temp
    end do

    temp1 = enorm ( n, wa3 ) / fnorm
    temp2 = ( sqrt ( par ) * pnorm ) / fnorm
    prered = temp1 ** 2 + temp2 ** 2 / 0.5D+00
    dirder = - ( temp1 ** 2 + temp2 ** 2 )
!
!  Compute the ratio of the actual to the predicted reduction.
!
    if ( prered /= 0.0D+00 ) then
      ratio = actred / prered
    else
      ratio = 0.0D+00
    end if
!
!  Update the step bound.
!
    if ( ratio <= 0.25D+00 ) then

      if ( 0.0D+00 <= actred ) then
        temp = 0.5D+00
      end if

      if ( actred < 0.0D+00 ) then
        temp = 0.5D+00 * dirder / ( dirder + 0.5D+00 * actred )
      end if

      if ( 0.1D+00 * fnorm1 >= fnorm .or. temp < 0.1D+00 ) then
        temp = 0.1D+00
      end if

      delta = temp * min ( delta, pnorm / 0.1D+00 )
      par = par / temp

    else

      if ( par == 0.0D+00 .or. ratio >= 0.75D+00 ) then
        delta = 2.0D+00 * pnorm
        par = 0.5D+00 * par
      end if

    end if
!
!  Successful iteration.
!
!  Update X, FVEC, and their norms.
!
    if ( 0.0001D+00 <= ratio ) then
      x(1:n) = wa2(1:n)
      wa2(1:n) = diag(1:n) * x(1:n)
      fvec(1:m) = wa4(1:m)
      xnorm = enorm ( n, wa2 )
      fnorm = fnorm1
      iter = iter + 1
    end if
!
!  Tests for convergence.
!
    if ( abs ( actred) <= ftol .and. &
      prered <= ftol .and. &
      0.5D+00 * ratio <= 1.0D+00 ) then
      info = 1
    end if

    if ( delta <= xtol * xnorm ) then
      info = 2
    end if

    if ( abs ( actred) <= ftol .and. prered <= ftol &
      .and. 0.5D+00 * ratio <= 1.0D+00 .and. info == 2 ) then
      info = 3
    end if

    if ( info /= 0 ) then
      go to 300
    end if
!
!  Tests for termination and stringent tolerances.
!
    if ( nfev >= maxfev ) then
      info = 5
    end if

    if ( abs ( actred ) <= epsmch .and. prered <= epsmch &
      .and. 0.5D+00 * ratio <= 1.0D+00 ) then
      info = 6
    end if

    if ( delta <= epsmch * xnorm ) then
      info = 7
    end if

    if ( gnorm <= epsmch ) then
      info = 8
    end if

    if ( info /= 0 ) then
      go to 300
    end if
!
!  End of the inner loop. repeat if iteration unsuccessful.
!
    if ( ratio < 0.0001D+00 ) then
      go to 200
    end if
!
!  End of the outer loop.
!
    go to 30

  300 continue
!
!  Termination, either normal or user imposed.
!
  if ( iflag < 0 ) then
    info = iflag
  end if

  iflag = 0

  if ( 0 < nprint ) then
    call fcn ( m, n, x, fvec, fjac, ldfjac, iflag )
  end if

  return
endsubroutine lmder